1,088 research outputs found

    Photoemission Spectral Weight Transfer and Mass Renormalization in the Fermi-Liquid System La1x_{1-x}Srx_xTiO3+y/2_{3+y/2}

    Full text link
    We have performed a photoemission study of La1x_{1-x}Srx_xTiO3+y/2_{3+y/2} near the filling-control metal-insulator transition (MIT) as a function of hole doping. Mass renormalization deduced from the spectral weight and the width of the quasi-particle band around the chemical potential μ\mu is compared with that deduced from the electronic specific heat. The result implies that, near the MIT, band narrowing occurs strongly in the vicinity of μ\mu. Spectral weight transfer occurs from the coherent to the incoherent parts upon antiferromagnetic ordering, which we associate with the partial gap opening at μ\mu.Comment: 4 pages, 3 figure

    Dynamics of localized spins coupled to the conduction electrons with charge/spin currents

    Full text link
    The effects of the charge/spin currents of conduction electrons on the dynamics of the localized spins are studied in terms of the perturbation in the exchange coupling JKJ_{K} between them. The equations of motion for the localized spins are derived exactly up to O(JK2)O(J_{K}^2), and the equations for the two-spin system is solved numerically. It is found that the dynamics depends sensitively upon the relative magnitude of the charge and spin currents, i.e., it shows steady state, periodic motion, and even chaotic behavior. Extension to the multi-spin system and its implications including possible ``spin current detector'' are also discussed.Comment: 5 pages, 4 figures, REVTe

    Universal Scaling Behavior of Anomalous Hall Effect and Anomalous Nernst Effect in Itinerant Ferromagnets

    Full text link
    Anomalous Hall effect (AHE) and anomalous Nernst effect (ANE) in a variety of ferromagnetic metals including pure metals, oxides, and chalcogenides, are studied to obtain unified understandings of their origins. We show a universal scaling behavior of anomalous Hall conductivity σxy\sigma_{xy} as a function of longitudinal conductivity σxx\sigma_{xx} over five orders of magnitude, which is well explained by a recent theory of the AHE taking into account both the intrinsic and extrinsic contributions. ANE is closely related with AHE and provides us with further information about the low-temperature electronic state of itinerant ferromagnets. Temperature dependence of transverse Peltier coefficient αxy\alpha_{xy} shows an almost similar behavior among various ferromagnets, and this behavior is in good agreement quantitatively with that expected from the Mott rule.Comment: 4pages, 4figures, 1tabl

    Effective mass staircase and the Fermi liquid parameters for the fractional quantum Hall composite fermions

    Full text link
    Effective mass of the composite fermion in the fractional quantum Hall system, which is of purely interaction originated, is shown, from a numerical study, to exhibit a curious nonmonotonic behavior with a staircase correlated with the number (=2,4,...) of attached flux quanta. This is surprising since the usual composite-fermion picture predicts a smooth behavior. On top of that, significant interactions are shown to exist between composite fermions, where the excitation spectrum is accurately reproduced in terms of Landau's Fermi liquid picture with negative (i.e., Hund's type) orbital and spin exchange interactions.Comment: 4 pages, 3 figures, REVTe

    Topological spin-Hall current in waveguided zinc-blende semiconductors with Dresselhaus spin-orbit coupling

    Full text link
    We describe an intrinsic spin-Hall effect in nn-type bulk zinc-blende semiconductors with topological origin. When electron transport is confined to a waveguide structure, and the applied electric field is such that the spins of electrons remain as eigenstates of the Dresselhaus spin-orbit field with negligible subband mixing, a gauge structure appears in the momentum space of the system. In particular, the momentum space exhibits a non-trivial Berry curvature which affects the transverse motion of electrons anisotropically in spin, thereby producing a finite spin-Hall effect. The effect should be detectable using standard techniques in the literature such as Kerr rotation, and be readily distinguishable from other mechanisms of the spin-Hall effect.Comment: 6 pages, 3 figure

    Pseudogap Induced Antiferromagnetic Spin Correlation in High-Temperature Superconductors

    Full text link
    The pseudogap phenomena observed on cuprate high temperature superconductors are investigated based on the exact diagonalization method on the finite cluster t-J model. The results show the presence of the gap-like behavior in the temperature dependence of various magnetic properties; the NMR relaxation rate, the neutron scattering intensity and the static susceptibility. The calculated spin correlation function indicates that the pseudogap behavior arises associated with the development of the antiferromagnetic spin correlation with decreasing the temperature. The numerical results are presented to clarify the model parameter dependence, that covers the realistic experimental situation. The effect of the next-nearest neighbor hopping tt' is also studied.Comment: 7 pages, Revtex, with 10 eps figures, to appear in J. Phys. Soc. Jpn. (Vol. 70, No. 1

    Mott Transition vs Multicritical Phenomenon of Superconductivity and Antiferromagnetism -- Application to κ\kappa-(BEDT-TTF)2_2X --

    Full text link
    Interplay between the Mott transition and the multicritical phenomenon of d-wave superconductivity (SC) and antiferromagnetism (AF) is studied theoretically. We describe the Mott transition, which is analogous to a liquid-gas phase transition, in terms of an Ising-type order parameter η\eta. We reveal possible mean-field phase diagrams produced by this interplay. Renormalization group analysis up to one-loop order gives flows of coupling constants, which in most cases lead to fluctuation-induced first-order phase transitions even when the SO(5) symmetry exists betwen the SC and AF. Behaviors of various physical quantities around the Mott critical point are predicted. Experiments in κ\kappa-(BEDT-TTF)2_2X are discussed from this viewpoint.Comment: 4 pages, 9 figures, to appear in J. Phys. Soc. Jp
    corecore